

picoEmerald FT

Tunable Microscopy & Spectroscopy
Two-Color
ps Light Source

picoEmerald FT Two-Colors in One Box

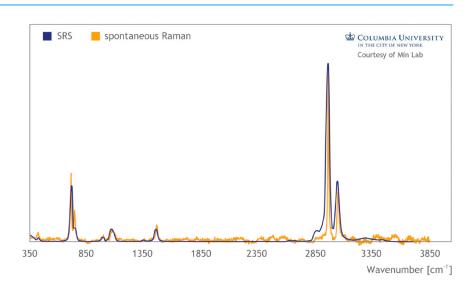
Microscopy and Spectroscopy with a Tunable Two-Color Source Best in class Coherent Raman light source that is as easy to use as a femtosecond two-photon excitation laser. Tuning speed: 1.5 s for a random tuning step, up to 100x faster than previous generation picoEmerald S.

Highly improved signal-to-noise ratio mainly due to the reduction of the laser repetition rate leads to 10x faster image acquisition compared to picoEmerald S.

Shot noise limited performance of the Pump beam (>5 MHz, 10 mW).

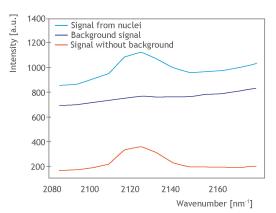
In a single box, picoEmerald provides fully automated, temporally and spatially overlapping picosecond pulse trains: 1032 nm from the laser oscillator and the OPO Signal beam. Tuning now down to 210 cm⁻¹ to access low frequency vibrational bands.

- Two-color turnkey system ideal for stimulated Raman microscopy up to video rate speed
- Perfect temporal and spatial overlap of exit beams
- Tunable between 660 nm ... 2340 nm
- 210 cm⁻¹ ... 5450 cm⁻¹ energy difference
- 2 ps pulses with 10 cm⁻¹ spectral width
- Fully automated and computer controlled
- Shot noise limited -> Extremely low noise compared to all-fiber laser systems
- Compatible with commercial microscopes and homebuilt setups
- Active and passive stabilization, ideal for long-term experiments



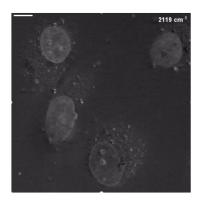
picoEmerald FT **SRS Application**

Stimulated Raman **Scattering Microscopy** (SRS)

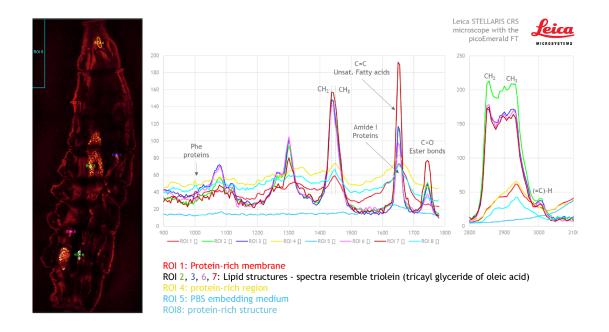

SRS microscopy is enabled by the picoEmerald system in combination with APE's integrated EOM (Electro-Optic Modulator). SRS microscopy provides nearly background free imaging contrast. It also allows easy spectroscopic identification of the sample fingerprint region based on Raman spectral databases. Very short integration times allow imaging at video rates.

Measurement of Real Raman Spectra

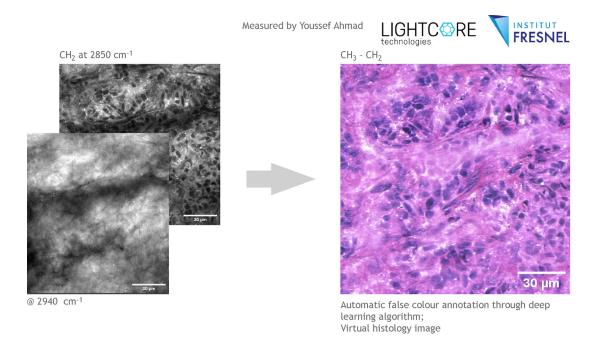
Raman Labels - Alkine Detection (EdU)


HeLa cells incubated in 100 µM EdU

Alkyne on (EdU)


Differential image 2123 - 2083 cm⁻¹

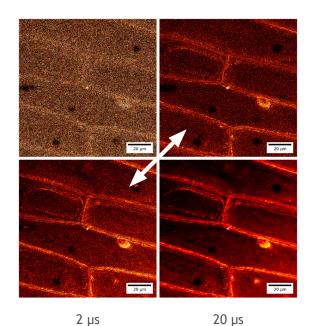
COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Courtesy of Min Lab



picoEmerald FT SRS Application

Fast Spectroscopic SRS Imaging of Hatched Drosophila Larvae

Stimulated Raman Histology on Human Brain - Glioblastoma Tumor


picoEmerald FT Application

SRS Microscopy

Onion imaged at $880~cm^{-1}$. Measurements with the picoEmerald FT (40 MHz, 20 MHz modulation frequency) are compared to those of the previous model, the picoEmerald S (80~MHz, 20~MHz modulation frequency). The microscopy images where taken for 2 μ s and 20 μ s pixel dwell time under identical conditions. It can be seen, that the picoEmerald FT yields a 10x faster acquisition speed, compared to the previous picoEmerald S.

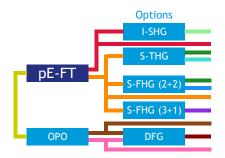
picoEmerald S

80 MHz 20 mW Pump 9 mW Stokes

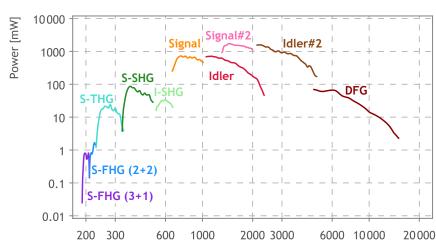
picoEmerald FT

40 MHz 20 mW Pump 9 mW Stokes

Microscope Compatibility


- Leica Stellaris and SP Series
- Lightcore BondXplorer
- Nikon Eclipse Ti2- Platform
- Thorlabs Multiphoton
- Zeiss LSM-Series
- Horiba
- Evident (Olympus) FV-Series
- Home-built setups

Application Examples


- SRS (Stimulated Raman Scattering) Microscopy
- CARS (Coherent Anti-Stokes Raman Scattering) Microscopy
- SRP (Stimulated Raman Photothermal) Microscopy
- Second Harmonics Imaging (SHG)
- Two-Photon Excitation Fluorescence Microscopy
- FLIM (Fluorescence Lifetime Imaging Microscopy)
- FRET (Fluorescence Resonance Energy Transfer)
- SEHRS (Surface Enhanced Hyper Raman Spectroscopy)

picoEmerald FT UV to MIR Generation

Example Configuration for UV-MIR Generation

Typical Tuning Curve

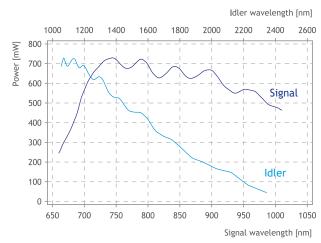
Wavelength [nm]

Wavelength extension options

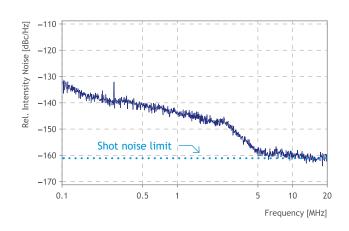
The picoEmerald FT's wavelength coverage can be extended from 190 nm to 16 μ m. All generated pulses are intrinsically synchronized with each other, conserving the pulse characteristics of the picoEmerald FT with 2 ps pulse length and 10 cm⁻¹ bandwidth.

The wavelength extension towards the UV/VIS range can be achieved using the picoEmerald FT in combination with our HarmoniXX devices.

Extension to the infrared range is based on a Levante IR OPO pumped through the optional 1 μm output of the picoEmerald FT. The Levante IR OPO enables independent wavelength tuning from 1300 nm up to 4.8 μm , independent of the picoEmerald FT. MIR light generation up to 16 μm is possible through DFG generation (HarmoniXX DFG).



picoEmerald FT Specifications


Main Parameters

Maiii i araiiietei 3	
Type of Source	Automated picosecond (narrow-band) tunable light source
Wavelength 1 1032 nm beam*	1032 nm (± 1.5) nm
Wavelength 2 OPO Signal	660 nm 1010 nm
Wavelength 3 OPO Idler*	1055 nm 2340 nm
Power 1 1032 nm beam*	>700 mW unmodulated >350 mW modulated at 20 MHz (customized versions on request)
Power 2 OPO Signal	>600 mW at 800 nm
Power 3 OPO Idler*	>400 mW at 1250 nm
Δv OPO Signal - 1032 nm beam*	210 cm ⁻¹ 5450 cm ⁻¹
Pulse Width	2 ps
Repetition Rate	40 MHz
Spectral Bandwidth Signal, 1032 nm beam	10 cm ⁻¹
Beam Diagnostics	Integrated spectrometer for Signal wavelength and bandwidth Integrated sensors for 1032 nm and Signal beam of power, position and temporal overlap
Pointing Stability	<100 μrad per 100 nm
M^2	<1.2 (OPO Signal), typ. 1.2 (1032 nm beam)
Polarization	Linear; Horizontal >100:1
Beam Divergence**	0.8 (± 0.2) mrad (at 800 nm and 1032 nm)
Beam Diameter at 2 m after exit**	3.0 (± 0.5) mm at 800 nm; 3.2 (± 0.5) mm at 1032 nm

picoEmerald FT – Relative Intensity Noise (RIN) measured at 800 nm with 10 mW – engineering data

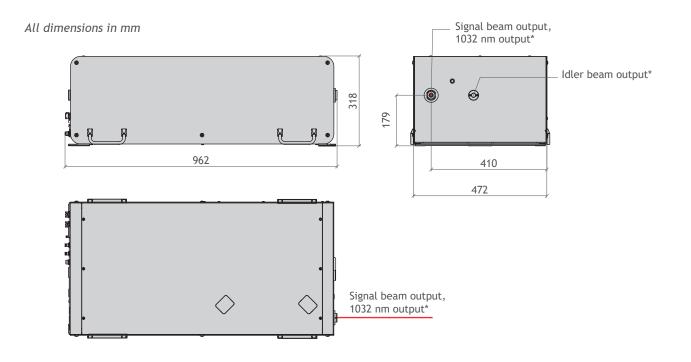
^{*}The picoEmerald FT is a modular platform. 1032 nm output, EOM and Idler output are optionally available.

^{**}Beam parameters optimized to generate foci with same size and z-position for Pump and Stokes.

APE follows a policy of continued product improvement. Therefore, specifications are subject to change without notice. © APE GmbH | Rev. 4.3.0

picoEmerald FT Specifications

Software


Software	Graphical User interface (GUI) for Windows PC
Remote Control	Ethernet TCP/IP / Serial RS232

EOM Modulator*

Stokes Modulation	EOM with 20 MHz modulation frequency, exactly half of the repetition rate,
	built into picoEmerald

Dimensions, Power Consumption, Environment

Dimension	picoEmerald: 962 mm x 318 mm x 472 mm, 104 kg (see drawing for details) Laser Control Unit: 19 inch (4 U), 11 kg Chiller: 197 mm x 330 mm x 279 mm, 10 kg
Power	100 V 240 V, 50 Hz 60 Hz, max. 450 W (setup without Chiller) 100 V 240 V, 50 Hz 60 Hz, max. 600 W (Chiller)
Environmental Conditions	ambient temperature and humidity during operation / standby: +18 +25°C, temperature fluctuation: <1°C recommended, humidity: <60%

APE Angewandte Physik und Elektronik GmbH

Plauener Str. 163-165 | Haus N | 13053 Berlin | Germany
T: +49 30 986 011-30 F: +49 30 986 011-333
E: sales@ape-berlin.de www.ape-berlin.de