The All New HarmoniXX Series

Wavelength Conversion for Ultrafast Lasers
The All New HarmoniXX Series

Meet the New HarmoniXX Wavelength Conversion Series from APE

- The HarmoniXX series has been completely re-engineered to incorporate stepper motors for precise wavelength adjustment. This enhancement makes optimum wavelength conversion quicker and easier than ever before.

- With its modular design, the HarmoniXX series offers the broadest wavelength range on the market and can be adapted to nearly all lasers, whether tunable or fixed frequency.

- The new models also feature automated output power optimization at the press of a button.

HarmoniXX SHG/THG/FHG at a Glance

- High conversion efficiency
- Easy alignment and automatic wavelength tuning
- Suitable for both tunable and fixed frequency fs and ps lasers
- Excellent pointing stability and beam profile
- Remote operation via software GUI
The HarmoniXX product line is a series of frequency converters for ultrafast lasers. Built as a modular system, it is ideal for Ti:Sapphire lasers as well as many other wavelength ranges, covering Second Harmonic Generation (SHG), Third Harmonic Generation (THG) and Fourth Harmonic Generation (FHG).

The focus is on user-friendliness and a compact design. By featuring a quick exchange of optics, the HarmoniXX devices can be used for a wide pulse duration range, from femtoseconds to several picoseconds.

All units are optimized for highest conversion efficiency at various laser power levels. They also display minimum pulse broadening while maintaining good spatial beam profile.

Harmonic Generation: Doubling, Tripling, Quadrupling

Generation of higher harmonics is a simple way to generate new photons with twice (or even higher) the energy (or frequency), and therefore to achieve a shorter wavelength. As many lasers emit light in the (near) infrared wavelength region, the HarmoniXX series by APE extends the use of lasers for a wider range of applications.

The HarmoniXX series features frequency doubling, tripling and quadrupling. Starting from the lowest available wavelength such as that from a Ti:Sapphire laser, at 680 nm, it is possible to reach 340 nm (SHG), 227 nm (THG) or 210 nm (FHG 2+2). HarmoniXX FHG 3+1 is able to reach even 190 nm.

Tunable Harmonic Generation

- HarmoniXX devices can convert wavelengths over a wide range. Not only for tunable laser systems, the HarmoniXX is taking care of the wavelength alignment.
- HarmoniXX devices expand the wavelength range for all fs and ps laser systems. The illustration above shows the output wavelength range of a Ti:Sa laser combined with a frequency doubling (SHG), - tripling (THG), or - quadrupling (FHG) system.
Discover Engineering at its Best

- Numerous advances have been made in both performance and usability. In addition to precise motor control on all critical adjustable parts, the HarmoniXX series features a special walk-off compensation mechanism, designed for highest stability and an unprecedented level of wavelength optimization.

More Wavelength and fs / ps Coverage
- Quick Optics Exchange
 The right choice of non-linear crystals and other optical components is essential for high-quality wavelength conversion. A quick exchange of optics makes it possible to adapt the HarmoniXX to different laser parameters, providing more freedom in terms of wavelength coverage in femtosecond or picosecond operation.

Easy, Intuitive, and Precise Operation
- Motorization & Sensors
 All HarmoniXX wavelength tunable components are driven electro-mechanically for precise alignment. The combination of motorization and the power sensor option allows the user to optimize the output power at the press of a button. This ensures 100% repeatability and consistently accurate alignment.

Walk-off Compensation
- Coupled Crystal Movement
 The special design of APE’s coupled crystal movement compensates the beam walk-off in nonlinear crystals and therefore secures highest pointing stability. Whichever wavelength is used, you can be sure of optimum crystal parameters and conversion efficiency.
Precise Motor Control is the New Standard

- The APE HarmoniXX series is now equipped with precise stepper motors to control all elements that require regular adjustment via the software GUI.
- This eliminates the need to open the device at all during alignment, which further improves the laser safety of the devices and keeps the optical elements free from contamination.
- APE offers the user all necessary tools for integration of the HarmoniXX into an automated laboratory setup.

Wavelength Coverage in Flexible Design

- A flexible design, with a quick optics exchange for greater utility, allows the HarmoniXX to be configured for different laser types or alternative wavelength combinations and pulse durations. The quick-exchange optics are color-coded for a simple assignment of the different crystal types.

Auto Power Optimization

- The HarmoniXX automatically optimizes all elements to maximum output power, even if the exact laser wavelength is unknown or changing. This feature is optionally available for all SHG, THG and FHG (2+2) HarmoniXX devices.

Walk-off Compensation for Exceptional Performance

- The integrated walk-off compensation design ensures constant pointing stability and enables an enhanced conversion efficiency and beam quality while changing the wavelength of the HarmoniXX. The assembly set consists of entangled crystal movement compensators for a perfect crystal match in all experimental conditions.
HarmoniXX Software

HarmoniXX Software GUI

- The HarmoniXX software enables the user to control all relevant parameters through a software GUI on the PC and gives direct access to the motors.
- This software allows continuous tracking and automatic tuning of the wavelength when a spectrometer is connected.
- Integration into an automated laboratory setup is simple via the TCP/IP interface. Sample command sets are provided by APE.
HarmoniXX The Industry Standard

Full Support for Industry Standards and Homebuilt Systems

- The well-established HarmoniXX family handles a wide variety of laser systems, pulse widths, and wavelengths from different manufacturers and homebuilt solutions.
- If your preferred system is not listed, contact us. We are always happy to help.

- Chameleon Coherent ▪ Mira 900 Coherent
- Chameleon Compact OPO Coherent/APE ▪ Mira OPO Coherent/APE ▪ Discovery Coherent ▪ Chameleon Vision Coherent ▪ Chameleon Ultra ▪ Fidelity Coherent ▪ Paladin Advanced Coherent
+ Levante Emerald OPO Coherent/APE ▪ RegA Coherent ▪ Vitara Coherent ▪ Inspire Spectra Physics
- Inspire OPO Spectra Physics ▪ MaiTai Spectra Physics ▪ Tsunami Spectra Physics ▪ taccor tune Laser Quantum ▪ Levante IR OPO APE ▪ Levante Emerald OPO APE ▪ picoEmerald APE ▪ Emerald Engine APE ▪ OPO-X APE ▪ Goji Amplitude ▪ Orange HP + Levante IR Menlo/APE ▪ FemtoFiber ultra 1050 + Levante IR Toptica/APE ▪ Aeropulse NKT

If your preferred system should not be listed, you are welcome to make an inquiry.
HarmoniXX Specifications

SHG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Wavelength Range</td>
<td>< 420 ... > 2000 nm (Spanning 1 Octave with one Optics Set; e.g. 650 - 1300 nm)</td>
</tr>
<tr>
<td>Output SHG</td>
<td>< 210 ... > 1000 nm (e.g. 340 ... 540 nm for TiSa)</td>
</tr>
<tr>
<td>Output Fundamental</td>
<td>Available</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>fs or ps</td>
</tr>
<tr>
<td>Conversion Efficiency</td>
<td>THG 10 % (fs), 3 % (ps)
SHG 20 % (fs), 10 % (ps)
*depends on laser model / pulse duration</td>
</tr>
<tr>
<td>Walkoff Compensation</td>
<td>Built-in mechanical walkoff compensator</td>
</tr>
<tr>
<td>Polarization (Linear)</td>
<td>Input: horizontal, THG Out: horizontal, SHG Out: vertical, Fundamental Out: horizontal</td>
</tr>
<tr>
<td>Automation</td>
<td>Fully Motorized, GUI / Software included, Auto Power Adjustment as Option</td>
</tr>
</tbody>
</table>

THG

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Wavelength Range</td>
<td>680 ... > 2000 nm (Spanning 1 Octave with one Optics Set; e.g. 650 - 1300 nm)</td>
</tr>
<tr>
<td>Output THG</td>
<td>Down to < 230 nm (e.g. 227 ... 360 nm for TiSa)</td>
</tr>
<tr>
<td>Output SHG</td>
<td>Available</td>
</tr>
<tr>
<td>Output Fundamental</td>
<td>Available</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>fs or ps</td>
</tr>
<tr>
<td>Conversion Efficiency</td>
<td>THG 10 % (fs), 3 % (ps)
SHG 20 % (fs), 10 % (ps)
*depends on laser model / pulse duration</td>
</tr>
<tr>
<td>Walkoff Compensation</td>
<td>Built-in mechanical walkoff compensator</td>
</tr>
<tr>
<td>Polarization (Linear)</td>
<td>Input: horizontal, THG Out: horizontal, SHG Out: vertical, Fundamental Out: vertical</td>
</tr>
<tr>
<td>Delay Compensation</td>
<td>Unlike conventional triplers, the HarmoniXX THG requires less adjustment efforts because no separation and recombination of the interacting beams is needed. This user-friendly feature has one common optical beam path for all interacting beams. It is implemented by means of a proprietary delay compensator and provides consistent spatial overlap for optimum efficiency.</td>
</tr>
<tr>
<td>Automation</td>
<td>Fully Motorized, GUI / Software included, Auto Power Adjustment as Option</td>
</tr>
</tbody>
</table>

FHG 2+2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Wavelength Range</td>
<td>840 ... 920 nm (other wavelengths on request)</td>
</tr>
<tr>
<td>Output</td>
<td>Down to 210 nm (e.g. 210 ... 230 nm for TiSa)</td>
</tr>
<tr>
<td>Output SHG, Fundamental</td>
<td>Available</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>fs or ps</td>
</tr>
<tr>
<td>Conversion Efficiency</td>
<td>FHG 4 % (fs)*
*depends on laser model / pulse duration</td>
</tr>
<tr>
<td>Walkoff Compensation</td>
<td>Built-in mechanical walkoff compensator</td>
</tr>
<tr>
<td>Polarization (Linear)</td>
<td>Input: horizontal, FHG Out: horizontal, SHG Out: vertical, Fundamental Out: horizontal</td>
</tr>
<tr>
<td>Automation</td>
<td>Fully Motorized, GUI / Software included, Auto Power Adjustment as Option</td>
</tr>
</tbody>
</table>
Auto Power Adjustment
Automated output power optimization at the press of a button

Quick Exchangable Optics Set
Wavelength range exchange sets
Pulse duration exchange set fs · ps

Specifications

FHG 3+1

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Wavelength Range</td>
<td>760 ... 920 nm (other wavelengths on request)</td>
</tr>
<tr>
<td>Output</td>
<td>Down to 190 nm (e.g. 190 ... 210 nm for TiSa)</td>
</tr>
<tr>
<td>Output THG, SHG, Fundamental</td>
<td>Available</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>fs or ps</td>
</tr>
<tr>
<td>Conversion Efficiency</td>
<td>FHG < 0.1 % (fs)* *(depends on laser model / pulse duration)</td>
</tr>
<tr>
<td>Automation</td>
<td>On request</td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Power Adjustment</td>
<td>Automated output power optimization at the press of a button</td>
</tr>
<tr>
<td>Quick Exchangable Optics Set</td>
<td>Wavelength range exchange sets</td>
</tr>
<tr>
<td></td>
<td>Pulse duration exchange set fs · ps</td>
</tr>
</tbody>
</table>

SHG Power Pumped with Ti:Sapphire

Typical tuning curve of HarmoniXX SHG power pumped with TiSa laser at about 3.5 W, 80 MHz, 130 fs.

HarmoniXX THG, SHG in THG and FHG 2+2 Power Pumped with Ti:Sapphire

Typical tuning curves of HarmoniXX THG, SHG in THG and FHG 2+2 power pumped with TiSa laser at about 3.5 W, 80 MHz, 130 fs.
HarmoniXX Technical Drawings

All Dimensions in mm

- **SHG / THG / FHG 2+2**

 - SHG Output
 - Depleted fundamental Output
 - Beam Input
 - Beam Output

- **THG**

 - THG Output
 - Depleted fundamental Output

- **FHG 2+2**

 - FHG/THG Output
 - Depleted fundamental Output

- **FHG 3+1**

 - FHG Output
 - THG, depl F Output
 - Beam Input
 - Beam Output

- **Depleted fundamental Output**
APE PRODUCT PORTFOLIO

Optical Parametric Oscillators

- fs / ps MHz OPO | fixed frequency pumped
- fs / ps MHz OPO | Ti:Sa laser pumped
- ns kHz | fixed frequency pumped
- OPO pump sources

Optical Parametric Amplifier

- fs high power OPA | fixed frequency pumped

Laser Diagnostics

- Autocorrelators
- Spiders
- Spectrometers
- Peak Power Monitoring

Wavelength Conversion

- Harmonic Generators SHG / THG / FHG
- Difference Frequency Generation (DFG)

Pulse Manipulation

- Pulse Pickers
- Cavity Dumpers
- Optical Delay Lines
- Pulse Compressors
- Pulse Shapers

Acousto-Optics

- Optical Modulators
- Intensity Modulators
- Frequency Shifters
APE Angewandte Physik & Elektronik GmbH
Plauener Str. 163-165 | Haus N | 13053 Berlin | Germany
T: +49 30 986 011-30
F: +49 30 986 011-333
E: sales@ape-berlin.de
www.ape-berlin.de

APE follows a policy of continued product improvement.
Therefore, specifications are subject to change without notice.

© APE GmbH | November 2017 | Rev. 3.2.0.