

Check it out!

Have a look at

quantiFlash®

at APE's booth

*quanti*Flash[®]

Deutsches Rheuma-Forschungszentrum Ein Institut der Leibniz-Gemeinschaft

Quantitative comparison study of various flow cytometers using a novel ultra stable calibration light source

Konrad von Volkmann¹, Kristen Feher², Jan Popien¹, Toralf Kaiser²

¹ APE Angewandte Physik & Elektronik GmbH, Plauener Str. 163-165, 13053 Berlin, Germany ² Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany

Motivation	Experimental setup				
Traditionally, flow cytometers are characterized	1-10µs	Fluorescence Channel	$(A) \odot (C)$	$B \otimes O$	

(sensitivity, linearity, long time stability etc.) by fluorescent microspheres. As shown by others^{*)} the coefficient of variation (CV) of a stable light source can be used for scale calibration in numbers of estimated photoelectrons. This allows the quantitative comparison of flow cytometers in terms of light detection efficiency. Due to the intrinsic CV (2-4%) of microspheres they are not suitable for such calibration. Here we show a comparison of the detection efficiency of 3 flow cytometers (FACSAria^M) using *quanti*Flash[®]. quantiFlash[®] is an ultra stable (CV < 0.1%) easy to use LED made for cytometer pulse generator characterization.

*) H. B. Steen, "Noise, Sensitivity, and Resolution of Flow Cytometers", Cytometry, Bd. 13, Bd. 8, S. 822-830 (1992) M. J. McCutcheon und R. G. Miller, "Fluorescence intensity resolution in flow systems.", J Histochem Cytochem, Bd. 27, Nr. 1, S. 246-249, (1979)

V2 digital		
1-10 µs, variable		
0.5-10 kHz, variable		
variable		
096 dB		
CV < 0.1%		
$CV \leq U.1/0$		
f-SMA termination		
rechargeable,		
USB powered		

*) high Q =high detection efficiency

- 1. Reference sample of single stained CD4-PE human PBMCs measured on two different sorters
- Scale calibration to Spe using *quanit*Flash[®]

in channels 585/20 and 780/60

Significant lower Q of sorter 1

laser alignment ? Yes, indeed!

Sorter 1: **Q** value is about **2-3 times higher**

3. Normalization factor ist given by

Conclusions

quantiFlash[®] allows the quantitative characterization of flow cytometers defined as Q. Thus, it is possible to predict the optical detection efficiency of a certain channel. This information is useful for optimal panel design. Moreover, *quanti*Flash[®] allows the comparison of flow cytometers regardless of the manufacturer design which is very useful in multicenter studies or even long-term experiments.